Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38631044

RESUMEN

Classical training theory postulates that performance fatigability following a training session should be proportional to the total work done (TWD); however, this notion has been questioned. This study investigated indices of performance and perceived fatigability after primary sessions of high-intensity interval (HIIT) and constant-work rate (CWR) cycling, each followed by a cycling time-to-task-failure (TTF) bout. On separate days, 16 participants completed an incremental cycling test, and, in a randomized order, i) a TTF trial at 80% of peak power output (PPO), ii) a HIIT session and iii) a CWR session, both of which were immediately followed by a TTF trial at 80% PPO. Central and peripheral aspects of performance fatigability were measured using interpolated twitch technique, and perceptual measures were assessed prior to and following the HIIT and CWR trials, and again following the TTF trial. Despite TWD being less following HIIT (P=0.029), subsequent TTF trial was an average of 125 s shorter following HIIT vs. CWR (P<0.001), and this was accompanied by greater impairments in voluntary and electrically evoked forces (P<0.001), as well as exacerbated perceptual measures (P<0.001); however, there were no differences in any fatigue measure following the TTF trial (P≥0.149). There were strong correlations between the decline in TTF and indices of peripheral (r=0.70) and perceived fatigability (r≥0.80) measured at the end of HIIT and CWR. These results underscore the dissociation between TWD and performance fatigability and highlight the importance of peripheral components of fatigability in limiting endurance performance during high-intensity cycling exercise.

2.
Am J Physiol Regul Integr Comp Physiol ; 326(3): R266-R275, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38223937

RESUMEN

The impacts of carbohydrate (CHO) availability on time to task failure (TTF) and physiological responses to exercise at the maximal lactate steady state (MLSS) have not been studied. Ten participants (3 females, 7 males) completed this double-blinded, placebo-controlled study that involved a ramp incremental test, MLSS determination, and four TTF trials at MLSS, all performed on a cycle ergometer. With the use of a combination of nutritional (CHO, 7 g/kg, and placebo, PLA, 0 g/kg drinks) and exercise interventions [no exercise (REST) and glycogen-reducing exercise (EX)], the four conditions were expected to differ in preexercise CHO availability (RESTCHO > RESTPLA > EXCHO > EXPLA). TTF at MLSS was not improved by CHO loading, as RESTCHO (57.1 [16.6] min) and RESTPLA (57.1 [15.6] min) were not different (P = 1.00); however, TTF was ∼50% shorter in EX conditions compared with REST conditions on average (P < 0.05), with EXCHO (39.1 [9.2] min) ∼90% longer than EXPLA (20.6 [6.9] min; P < 0.001). There were effects of condition for all perceptual and cardiometabolic variables when compared at isotime (P < 0.05) and task failure (TF; P < 0.05), except for ventilation, perceptual responses, and neuromuscular function measures, which were not different at TF (P > 0.05). Blood lactate concentration was stable in all conditions for participants who completed 30 min of exercise. These findings indicate that TTF at MLSS is not enhanced by preexercise CHO supplementation, but recent intense exercise decreases TTF at MLSS even with CHO supplementation. Extreme fluctuations in diet and strenuous exercise that reduce CHO availability should be avoided before MLSS determination.NEW & NOTEWORTHY Carbohydrate (CHO) loading did not increase participants' ability to cycle at their maximal lactate steady state (MLSS); however, performing a glycogen depletion task the evening before cycling at MLSS reduced the time to task failure, even when paired with a high dose of CHO. These diet and exercise interventions influenced blood lactate concentration ([BLa]) but not the stability of [BLa]. Activities that reduce CHO availability should be avoided before MLSS determination.


Asunto(s)
Ácido Láctico , Resistencia Física , Masculino , Femenino , Humanos , Resistencia Física/fisiología , Consumo de Oxígeno , Prueba de Esfuerzo , Glucógeno , Poliésteres
3.
Eur J Appl Physiol ; 123(10): 2295-2306, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37278835

RESUMEN

PURPOSE: Constant blood flow occlusion (BFO) superimposed on aerobic exercise can impair muscle function and exercise tolerance; however, no study has investigated the effect of intermittent BFO on the associated responses. Fourteen participants (n = 7 females) were recruited to compare neuromuscular, perceptual, and cardiorespiratory responses to shorter (5:15s, occlusion-to-release) and longer (10:30s) BFO applied during cycling to task failure. METHODS: In randomized order, participants cycled to task failure (task failure 1) at 70% of peak power output with (i) shorter BFO, (ii) longer BFO, and (iii) no BFO (Control). Upon task failure in the BFO conditions, BFO was removed, and participants continued cycling until a second task failure (task failure 2). Maximum voluntary isometric knee contractions (MVC) and femoral nerve stimuli were performed along with perceptual measures at baseline, task failure 1, and task failure 2. Cardiorespiratory measures were recorded continuously across the exercises. RESULTS: Task failure 1 was longer in Control than 5:15s and 10:30s (P < 0.001), with no differences between the BFO conditions. At task failure 1, 10:30s elicited a greater decline in twitch force compared to 5:15s and Control (P < 0.001). At task failure 2, twitch force remained lower in 10:30s than Control (P = 0.002). Low-frequency fatigue developed to a greater extent in 10:30s compared to Control and 5:15s (P < 0.047). Dyspnea and Fatigue were greater for Control than 5:15s and 10:30s at the end of task failure 1 (P < 0.002). CONCLUSION: Exercise tolerance during BFO is primarily dictated by the decline in muscle contractility and accelerated development of effort and pain.


Asunto(s)
Tolerancia al Ejercicio , Músculo Esquelético , Femenino , Humanos , Electromiografía , Tolerancia al Ejercicio/fisiología , Fatiga , Contracción Isométrica/fisiología , Fatiga Muscular/fisiología , Músculo Esquelético/fisiología , Masculino
4.
Med Sci Sports Exerc ; 55(4): 690-699, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36729921

RESUMEN

INTRODUCTION: The intensity, duration, and distribution of work and recovery phases during high-intensity interval training (HIIT) modulate metabolic perturbations during exercise and subsequently influence the development of performance fatigability and exercise tolerance. This study aimed to characterize neuromuscular, perceptual, and cardiorespiratory responses to work-to-rest ratio-matched HIIT protocols differing in work and rest interval duration. METHODS: Twelve healthy individuals (six women) first completed a ramp incremental test to determine 90% of peak power output, and then in three randomized visits, they completed three cycling protocols to task failure at 90% of peak power output: (i) 3- to 3-min work-to-passive rest ratio HIIT (HIIT 3min ), (ii) 1- to 1-min work-to-passive rest ratio HIIT (HIIT 1min ), and (iii) constant load (CL). Interpolated twitch technique, including maximal voluntary isometric knee extensions and femoral nerve electrical stimuli, was performed at baseline, every 6 min of work, and task failure. Perceptual and cardiorespiratory responses were recorded every 3 min and continuously across the exercises, respectively. RESULTS: The work completed during HIIT 1min (8447 ± 5124 kJ) was considerably greater than HIIT 3min (1930 ± 712 kJ) and CL (1076 ± 356) ( P < 0.001). At work-matched, HIIT 1min resulted in a lesser decline in maximal voluntary contraction and twitch force compared with HIIT 3min and CL ( P < 0.001). Perceived effort, pain, and dyspnea were least in HIIT 1min and HIIT 3min compared with CL ( P < 0.001). At task failure, HIIT 1min resulted in less voluntary activation than HIIT 3min ( P = 0.010) and CL ( P = 0.043), and engendered less twitch force decline than CL ( P = 0.021). CONCLUSIONS: Overall, the mitigated physiological and perceptual responses during shorter work periods (HIIT 1min ) enhance exercise tolerance in comparison to longer work intervals at the same intensity (HIIT 3min , CL).


Asunto(s)
Entrenamiento de Intervalos de Alta Intensidad , Consumo de Oxígeno , Humanos , Femenino , Consumo de Oxígeno/fisiología , Ejercicio Físico/fisiología , Rodilla/fisiología , Tolerancia al Ejercicio , Terapia por Ejercicio , Entrenamiento de Intervalos de Alta Intensidad/métodos
5.
Front Neurol ; 13: 983643, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36324385

RESUMEN

Whereas fatigue is recognized to be the main complaint of patients with multiple sclerosis (PwMS), its etiology, and particularly the role of resistance to fatigability and its interplay with disability level, remains unclear. The purposes of this review were to (i) clarify the relationship between fatigue/disability and neuromuscular performance in PwMS and (ii) review the corticospinal and muscular mechanisms of voluntary muscle contraction that are altered by multiple sclerosis, and how they may be influenced by disability level or fatigue. Neuromuscular function at rest and during exercise are more susceptible to impairement, due to deficits in voluntary activation, when the disability is greater. Fatigue level is related to resistance to fatigability but not to neuromuscular function at rest. Neurophysiological parameters related to signal transmission such as central motor conduction time, motor evoked potentials amplitude and latency are affected by disability and fatigue levels but their relative role in the impaired production of torque remain unclear. Nonetheless, cortical reorganization represents the most likely explanation for the heightened fatigability during exercise for highly fatigued and/or disabled PwMS. Further research is needed to decipher how the fatigue and disability could influence fatigability for an ecological task, especially at the corticospinal level.

6.
Appl Physiol Nutr Metab ; 47(12): 1160-1171, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36103724

RESUMEN

Hypoxia negatively impacts aerobic exercise, but exercise testing in hypoxia has not been studied comprehensively. To determine the effects of simulated altitude on the gas exchange threshold (GET), respiratory compensation point (RCP), and maximal oxygen uptake (V̇O2max), 24 participants (mean [SD]; 26 [4] years; 171.6 [9.7] cm; 69.2 [11.9] kg) acclimatized to mild altitude (MILD; ∼1100 m) performed three cycling ramp-incremental exercise tests (with verification stages performed at 110% of peak power output (PPO)) in simulated altitudes of 0 m (sea level, SL), 1111 m (MILD), and 2222 m (moderate altitude, MOD), in a randomized order. There were significant effects of condition (i.e., fraction of inspired oxygen [FIO2]) for GET (p = 0.001), RCP (p < 0.001), V̇O2max (p < 0.001), and PPO (p < 0.001). The V̇O2 corresponding to GET and RCP (mL·kg-1·min-1) in MOD (24.1 [4.3]; 37.3 [5.1]) were significantly lower (p < 0.05) compared to SL (27.1 [4.4]; 41.8 [6.6]) and MILD (26.8 [5.7]; 40.7 [7.3]) but similar (p > 0.05) between SL and MILD. For each increase in simulated altitude, V̇O2max (SL: 51.3 [7.4]; MILD: 50.0 [7.6]; MOD: 47.3 [7.1] mL·kg-1·min-1) and PPO (SL: 332 [80]; MILD: 327 [78]; SL: 316 [76] W) decreased significantly (p < 0.05 for all comparisons). V̇O2max values from the verification stage were lower than those measured during the ramp-incremental test (p = 0.017). Overall, a mild simulated altitude had a significant effect on V̇O2max and PPO but not GET and RCP, MOD decreased all four variables, and the inclusion of a verification stage had little effect on the determination of V̇O2max in a group of young healthy adults regardless of the FIO2. Trial registration: Open Science Framework 10.17605/OSF.IO/ZTC9E.


Asunto(s)
Altitud , Consumo de Oxígeno , Adulto , Humanos , Consumo de Oxígeno/fisiología , Estudios Cruzados , Prueba de Esfuerzo , Hipoxia/diagnóstico , Oxígeno
7.
J Appl Physiol (1985) ; 133(2): 323-334, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35771217

RESUMEN

A comprehensive characterization of neuromuscular and perceptual mechanisms of fatigue at task failure following exercise across the entire intensity spectrum is lacking. This study evaluated the extent of peripheral and central fatigue, and corresponding perceptual attributes, at task failure following cycling within the moderate-(MOD), heavy-(HVY), severe-(SVR), and extreme-(EXT) intensity domains. After a ramp-incremental test, 11 young males performed four constant-power output trials to the limit of tolerance (Tlim) at 4 distinct domain-specific workloads. These trials were preceded and followed by 5-s knee-extension maximal voluntary contractions (MVCs) and femoral nerve electrical stimuli to quantify peripheral and central fatigue. In addition, perceptual measures including ratings of global fatigue, legs pain, dyspnea, and perceived effort (RPE) were also collected. At Tlim, reductions in MVC were independent of intensity (P > 0.05). However, peripheral fatigue was greater following EXT and SVR and progressively, but distinctively, lower following HVY and MOD (P < 0.05). Central fatigue was similar after SVR, HVY, and MOD, but absent after EXT (P < 0.05). At Tlim, subjective ratings of global fatigue were progressively higher with lower exercise intensities, whereas ratings of legs pain and dyspnea were progressively higher with higher exercise intensities. On the other hand, RPE was maximal following HVY, SVR, and EXT, but not MOD. The findings demonstrate that at Tlim, the extent of peripheral fatigue is highly domain-specific, whereas the extent of central fatigue is not. Sensations such as fatigue, pain, and dyspnea may integrate with mechanisms of sense of effort to determine task failure in a manner specific to each intensity domain.NEW & NOTEWORTHY Together with other physiological responses, the neuromuscular fatigue mechanisms, and related perceptual responses, accompanying task failure are suggested to be dependent on the intensity domain within which exercise is sustained. Here, we show that peripheral fatigue demonstrates a high domain specificity, whereas such specificity is absent for central fatigue. Sensations of fatigue, pain, and breathlessness demonstrated intensity domain specificity and might have contributed to reaching maximal levels of RPE and, thus, task failure.


Asunto(s)
Ciclismo , Fatiga Muscular , Ciclismo/fisiología , Disnea , Electromiografía , Tolerancia al Ejercicio/fisiología , Humanos , Masculino , Fatiga Muscular/fisiología , Músculo Esquelético/fisiología , Dolor
8.
Med Sci Sports Exerc ; 54(10): 1665-1677, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35551406

RESUMEN

PURPOSE: This study aimed to investigate the time course and amplitude of performance fatigability during cycling at intensities around the maximal lactate steady state (MLSS) until task failure (TTF). METHODS: Ten females and 11 males were evaluated in eight visits: 1) ramp incremental test; 2-3) 30-min constant power output (PO) cycling for MLSS determination; and 4-8) cycling to TTF at PO relative to the MLSS of (i) -15%, (ii) -10 W, (iii) at MLSS, and (iv) +10 W, and (v) +15%. Performance fatigability was characterized by femoral nerve electrical stimulation of knee extensors at baseline; minutes 5, 10, 20, and 30; and TTF. Oxygen uptake, blood lactate concentration, muscle oxygen saturation, and perceived exertion were evaluated. RESULTS: Approximately 75% of the total performance fatigability occurred within 5 min of exercise, independently of exercise intensity, followed by a further change at minute 30. Contractile function declined more in males than females (all P < 0.05). At task failure, exercise duration declined from MLSS -15% to MLSS +15% (all P < 0.05), accompanied by a greater rate of decline after MLSS +15% and MLSS +10 compared with MLSS, MLSS -10 , and MLSS -15% for voluntary activation (-0.005 and -0.003 vs -0.002, -0.001 and -0.001%·min -1 , respectively) and contractile function (potentiated single twitch force, -0.013 and -0.009 vs -0.006, -0.004 and -0.004%·min -1 , respectively). CONCLUSIONS: Whereas the time course of performance fatigability responses was similar regardless of exercise intensity and sex, the total amplitude and rate of change were affected by the distinct metabolic disturbances around the MLSS, leading to different performance fatigability etiologies at task failure.


Asunto(s)
Prueba de Esfuerzo , Ejercicio Físico , Ciclismo/fisiología , Ejercicio Físico/fisiología , Fatiga/etiología , Femenino , Humanos , Ácido Láctico , Masculino , Oxígeno , Consumo de Oxígeno
9.
J Sports Sci Med ; 20(2): 300-309, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34211323

RESUMEN

Non-local muscle fatigue (NLMF) studies have examined crossover impairments of maximal voluntary force output in non-exercised, contralateral muscles as well as comparing upper and lower limb muscles. Since prior studies primarily investigated contralateral muscles, the purpose of this study was to compare NLMF effects on elbow flexors (EF) and plantar flexors (PF) force and activation (electromyography: EMG). Secondly, possible differences when testing ipsilateral or contralateral muscles with a single or repeated isometric maximum voluntary contractions (MVC) were also investigated. Twelve participants (six males: (27.3 ± 2.5 years, 186.0 ± 2.2 cm, 91.0 ± 4.1 kg; six females: 23.0 ± 1.6 years, 168.2 ± 6.7 cm, 60.0 ± 4.3 kg) attended six randomized sessions where ipsilateral or contralateral PF or EF MVC force and EMG activity (root mean square) were tested following a dominant knee extensors (KE) fatigue intervention (2×100s MVC) or equivalent rest (control). Testing involving a single MVC (5s) was completed by the ipsilateral or contralateral PF or EF prior to and immediately post-interventions. One minute after the post-intervention single MVC, a 12×5s MVCs fatigue test was completed. Two-way repeated measures ANOVAs revealed that ipsilateral EF post-fatigue force was lower (-6.6%, p = 0.04, d = 0.18) than pre-fatigue with no significant changes in the contralateral or control conditions. EF demonstrated greater fatigue indexes for the ipsilateral (9.5%, p = 0.04, d = 0.75) and contralateral (20.3%, p < 0.01, d = 1.50) EF over the PF, respectively. There were no significant differences in PF force, EMG or EF EMG post-test or during the MVCs fatigue test. The results suggest that NLMF effects are side and muscle specific where prior KE fatigue could hinder subsequent ipsilateral upper body performance and thus is an important consideration for rehabilitation, recreation and athletic programs.


Asunto(s)
Codo/fisiología , Pie/fisiología , Fatiga Muscular/fisiología , Músculo Cuádriceps/fisiología , Adulto , Electromiografía , Femenino , Humanos , Rodilla/fisiología , Masculino , Contracción Muscular , Adulto Joven
10.
J Neurophysiol ; 124(4): 1131-1143, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32877296

RESUMEN

It is unclear whether motor fatigability and perceived fatigue share a common pathophysiology in people with multiple sclerosis (PwMS). This cross-sectional investigation explored the relationship between the mechanisms of motor fatigability from cycling and fatigue severity in PwMS. Thirteen highly fatigued (HF) and thirteen nonfatigued (LF) PwMS and thirteen healthy controls (CON) completed a step test until volitional exhaustion on an innovative cycle ergometer. Neuromuscular evaluations involving femoral nerve electrical stimulation and transcranial magnetic stimulation were performed every 3 min throughout cycling. One-way ANOVA at baseline and exhaustion uncovered evidence of consistently smaller motor evoked potential (MEP) amplitudes (P = 0.011) and prolonged MEP latencies (P = 0.041) in HF as well as a greater decline in maximal voluntary contraction force (HF: 63 ± 13%; LF: 75 ± 13%; CON: 73 ± 11% of pre; P = 0.037) and potentiated twitch force (HF: 35 ± 13%; LF: 50 ± 16%; CON: 47 ± 17% of pre; P = 0.049) in HF at volitional exhaustion. Hierarchical regression determined that fatigue severity on the Fatigue Severity Scale was predicted by prolonged MEP latencies (change in r2 = 0.389), elevated peripheral muscle fatigability (change in r2 = 0.183), and depressive symptoms (change in r2 = 0.213). These findings indicate that MS-related fatigue is distinguished by disrupted corticospinal responsiveness, which could suggest progressive pathology, but fatigability from whole body exercise and depressive symptoms also influence perceptions of fatigue in PwMS.NEW & NOTEWORTHY The etiology of fatigability from whole body exercise was examined for the first time to accurately elucidate the relationship between fatigue and fatigability in multiple sclerosis (MS). Compromised corticospinal responsiveness predicted fatigue severity, providing a novel, objective indicator of fatigue in MS. Although the impaired corticomotor transmission did not aggravate muscle activation in this group of people with multiple sclerosis (PwMS) of lower disability, heightened muscle fatigability was seen to contribute to perceptions of fatigue in PwMS.


Asunto(s)
Ejercicio Físico , Esclerosis Múltiple/fisiopatología , Fatiga Muscular , Tractos Piramidales/fisiopatología , Adulto , Potenciales Evocados Motores , Femenino , Nervio Femoral/fisiopatología , Humanos , Contracción Isométrica , Masculino , Persona de Mediana Edad , Músculo Esquelético/fisiopatología , Tiempo de Reacción
11.
Microvasc Res ; 132: 104063, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32841627

RESUMEN

Although it has been claimed that rolling massage (RM), may lead to improvements in skeletal muscle oxygenation, metabolism, blood flow, and vascular function, scientific evidence has not yet been provided. Thus, the current study investigated the effects of 30 s and 2 min of RM on forearm muscle oxygenation, parameters associated with oxidative metabolism, and microvascular reactivity as well as brachial artery endothelial function. Forearm skeletal muscle parameters were assessed in 12 healthy young men (26 ± 6 yrs) using near-infrared spectroscopy (NIRS) combined with a 5-min vascular occlusion test. Additionally, brachial artery endothelial function was simultaneously assessed by measuring the relative change in brachial artery diameter normalized to the hyperemic blood flow (Normalized %FMD). These measurements were performed before and after the RM interventions performed on the anterior forearm muscles. Forearm muscle oxygenation increased after 30 s of RM (62 ± 7 to 71 ± 11%; p = 0.02) while there was no change from baseline to post-intervention after 2 min of RM. No change was observed for oxidative metabolism, however, the significant main effect (p = 0.02) for NIRS-derived reperfusion slope (%·s-1) indicated that microvascular function improved after both 30 s (2.30 ± 0.5 to 2.61 ± 0.70%·s-1) and 2 min of RM (2.33 ± 0.4 to 2.60 ± 0.85%·s-1). The lack of significant effects of RM on Normalized %FMD suggest that the RM did not acutely improve brachial artery endothelial function. These findings provide, for the first time, evidence that RM improves skeletal muscle oxygenation and parameters associated with microvascular reactivity. Additionally, RM increased brachial artery blood flow, but not upstream brachial artery endothelial function.


Asunto(s)
Arteria Braquial/fisiología , Masaje , Microcirculación , Microvasos/fisiología , Músculo Esquelético/irrigación sanguínea , Consumo de Oxígeno , Oxígeno/sangre , Adulto , Velocidad del Flujo Sanguíneo , Medicina Basada en la Evidencia , Antebrazo , Voluntarios Sanos , Humanos , Masculino , Vasodilatación , Adulto Joven
12.
Exp Gerontol ; 133: 110877, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32068090

RESUMEN

Studies have suggested that older individuals are more fatigable than young adults when power loss, measured during single-joint contractions, is considered the fatigue index; however, age-related differences in fatigue considering power measurements during multi-joint movements (e.g., cycling) have not been fully elucidated yet. This study examined age-related differences in dynamic and isometric measures of fatigue in response to three cycling exercises. Ten young (27 ±â€¯4 years) and ten old (74 ±â€¯4 years) men performed exercises on different days, 30-s Wingate, 10-min at severe-intensity, and 90-min at moderate-intensity. Dynamic measures-maximal power, torque, and velocity-were assessed after cycling and during recovery (1-8 min post-exercise) through 7-s cycling sprints and isometric force and fatigue etiology (central and peripheral components) through isometric contractions. There were no age-related differences in the relative reduction of dynamic and isometric measures following the Wingate and moderate-intensity tasks. Maximal power, isometric force, and indices of peripheral function (e.g., high-frequency doublet) decreased more in young compared with older individuals after the severe-intensity exercise (all p < .05). The only observed age-related difference in the recovery of NM fatigue was a slower recovery of power and torque from 1 to 8 min (p < .05) and at 4 min (p = .015), respectively, in younger males after the Wingate. Age-related fatigue and recovery depend on the fatiguing exercise intensity and duration and on the fatigue assessment mode. This study provides novel information on age-related neuromuscular fatigue responses to multi-joint dynamic exercises performed at different intensities and durations.


Asunto(s)
Fatiga Muscular , Músculo Esquelético , Electromiografía , Ejercicio Físico , Humanos , Contracción Isométrica , Masculino , Torque
13.
J Physiol ; 598(2): 285-302, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31826296

RESUMEN

KEY POINTS: Fatigue and muscle pain induced in a remote muscle group has been shown to alter neuromuscular performance in exercising muscles. Inhibitory neural feedback associated with activation of mechano- and metabo-sensitive muscle afferents has been implicated in this phenomenon. The present study aimed to quantify and compare the effects of pre-induced fatigue and concurrent rising pain (evoked by muscle ischaemia) on the contralateral leg exercise capacity, neuromuscular performance, and corticomotor excitability and inhibition of knee extensor muscles. Pre-induced fatigue in one leg had a greater detrimental effect than the concurrent rising pain on the contralateral limb cycling capacity. Furthermore, pre-induced fatigue, but not concurrent rising pain, reduced corticospinal inhibition recorded from tested contralateral muscles. Regardless of the origin or mechanisms modulating sensory afferents during single-leg cycling exercise (i.e. pre-induced fatigue vs. concurrent rising pain), the limit of exercise tolerance remained the same and exercise was terminated upon achievement of a sensory tolerance limit. ABSTRACT: Individuals often need to maintain voluntary contractions during high intensity exercise in the presence of fatigue and pain. This investigation examined the effects of pre-induced fatigue and concurrent rising pain (evoked by muscle ischaemia) in one leg on motor fatigability and corticospinal excitability/inhibition of the contralateral limb. Twelve healthy males undertook four experimental protocols including unilateral cycling to task failure at 80% of peak power output with: (i) the right-leg (RL); (ii) the left-leg (LL); (iii) RL immediately preceded by LL protocol (FAT-RL); and (iv) RL when blood flow was occluded in the contralateral (left) leg (PAIN-RL). Participants performed maximal and submaximal 5 s right-leg knee extensions during which transcranial magnetic and femoral nerve electrical stimuli were delivered to elicit motor-evoked and compound muscle action potentials, respectively. The pre-induced fatigue reduced the right leg cycling time-to-task failure (mean ± SD; 332 ± 137 s) to a greater extent than concurrent pain (460 ± 158 s), compared to RL (580 ± 226 s) (P < 0.001). The maximum voluntary contraction force declined less following FAT-RL (P < 0.019) and PAIN-RL (P < 0.032) compared to RL. Voluntary activation declined and the corticospinal excitability recorded from knee extensors increased similarly after the three conditions (P < 0.05). However, the pre-induced fatigue, but not concurrent pain, reduced corticospinal inhibition compared to RL (P < 0.05). These findings suggest that regardless of the origin and/or mechanisms modulating sensory afferent feedback during single-leg cycling (e.g. pre-induced fatigue vs. concurrent rising pain), the limit of exercise tolerance remains the same, suggesting that exercise will be terminated upon achievement of sensory tolerance limit.


Asunto(s)
Tolerancia al Ejercicio , Fatiga Muscular , Músculo Esquelético/fisiopatología , Dolor/fisiopatología , Vías Aferentes , Electromiografía , Potenciales Evocados Motores , Retroalimentación Fisiológica , Humanos , Masculino , Contracción Muscular , Estimulación Magnética Transcraneal
14.
Brain Sci ; 9(10)2019 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-31557879

RESUMEN

To investigate the influence of pre-induced fatigue in one leg on neuromuscular performance and corticospinal responses of the contralateral homologous muscles, three experiments were conducted with different exercise protocols; A (n = 12): a 60 s rest vs. time-matched sustained left leg knee extension maximum voluntary contraction (MVC), B (n = 12): a 60 s rest vs. time-matched left leg MVC immediately followed by 60 s right leg MVC, and C (n = 9): a similar protocol to experiment B, but with blood flow occluded in the left leg while the right leg was performing the 60 s MVC. The neuromuscular assessment included 5 s knee extensions at 100%, 75%, and 50% of MVC. At each force level, transcranial magnetic and peripheral nerve stimuli were elicited to investigate the influence of different protocols on the right (tested) knee extensors' maximal force output, voluntary activation, corticospinal excitability, and inhibition. The pre-induced fatigue in the left leg did not alter the performance nor the neuromuscular responses recorded from the right leg in the three experiments (all p > 0.3). However, enhanced corticospinal pathway excitability was evident in the tested knee extensors (p = 0.002). These results suggest that the pre-induced fatigue and muscle ischemia in one leg did not compromise the central and peripheral components of the neuromuscular function in the tested contralateral leg.

15.
Appl Physiol Nutr Metab ; 44(12): 1320-1328, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31082324

RESUMEN

The majority of studies have routinely measured neuromuscular (NM) fatigue with a delay (∼1-3 min) after cycling exercises. This is problematic since NM fatigue can massively recover within the first 1-2 min after exercise. This study investigated the etiology of knee extensors (KE) NM fatigue and recovery kinetics in response to cycling exercises by assessing NM function as early as 10 s following cycling and up to 8 min of recovery. Ten young males performed different cycling exercises on different days: a Wingate (WING), a 10-min task at severe-intensity (SEV), and a 90-min task at moderate-intensity (MOD). Electrically evoked and isometric maximal voluntary contractions (IMVC) of KE were assessed before, after, and during recovery. SEV induced the highest decrease in IMVC. Peak twitch (Pt) was more reduced in WING and SEV than in MOD (p < 0.001), whereas voluntary activation decreased more after MOD than WING (p = 0.043). Regarding Pt and the ratio between low- and high-frequency doublet (i.e., low-frequency fatigue), recovery was faster for WING, whereas IMVC and high-frequency doublet recovered slower during MOD (p < 0.05). Our results confirm that peripheral fatigue is greater after WING and SEV, while central fatigue is greater following MOD. Peripheral fatigue can substantially recover within minutes after a supramaximal exercise while NM function recovered slower after prolonged, moderate-intensity exercise. This study provides an accurate estimation of NM fatigue and recovery kinetics because of dynamic exercise with large muscle mass by significantly shortening the delay for postexercise measurements.


Asunto(s)
Ciclismo/fisiología , Ergometría , Fatiga Muscular , Adulto , Electromiografía , Humanos , Contracción Isométrica , Cinética , Masculino , Adulto Joven
16.
BMC Neurosci ; 20(1): 9, 2019 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-30871475

RESUMEN

BACKGROUND: The recovery of neurophysiological parameters at various time intervals following fatiguing exercise has been investigated previously. However, the repetition of neuromuscular assessments during the recovery period may have interfered with the true corticomotor excitability responses. In this experiment, fatiguing contractions were combined with a single post-fatigue assessment at varying time points. Ten participants undertook 5 bouts of 60-s maximal voluntary contractions (MVC) of the elbow flexors, separated by 20 min. Before and after each 60-s fatiguing exercise (FAT), participants performed a series of 6-s contractions at 100, 75 and 50% of their MVC during which transcranial magnetic, transmastoid electrical and brachial plexus electrical stimuli were used to elicit motor evoked potentials (MEP), cervicomedullary motor evoked potentials (CMEP) and compound muscle action potentials (Mmax) in the biceps brachii muscle, respectively. Post-FAT measurements were randomly performed 0, 15, 30, 60, or 120 s after each FAT. RESULTS: MVC force declined to 65.1 ± 13.1% of baseline following FAT and then recovered to 82.7 ± 10.2% after 60 s. The MEP·Mmax-1 ratio recorded at MVC increased to 151.1 ± 45.8% and then returned to baseline within 60 s. The supraspinal excitability (MEP·CMEP-1) measured at MVC increased to 198.2 ± 47.2% and fully recovered after 30 s. The duration of post-MEP silent period recorded at MVC elongated by 23.4 ± 10.6% during FAT (all P < 0.05) but fully recovered after 15 s. CONCLUSIONS: The current study represents the first accurate description of the time course and pattern of recovery for supraspinal and spinal excitability and inhibition following a short maximal fatiguing exercise in upper limb.


Asunto(s)
Encéfalo/fisiología , Codo/fisiología , Contracción Muscular/fisiología , Fatiga Muscular/fisiología , Músculo Esquelético/fisiología , Recuperación de la Función/fisiología , Adulto , Plexo Braquial/fisiología , Estimulación Eléctrica , Potenciales Evocados Motores/fisiología , Humanos , Masculino , Apófisis Mastoides , Inhibición Neural/fisiología , Tractos Piramidales/fisiología , Factores de Tiempo , Estimulación Magnética Transcraneal
17.
J Exp Biol ; 222(Pt 9)2019 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-30890621

RESUMEN

Although fatigue can be defined as an exercise-related decrease in maximal power or isometric force, most studies have assessed only isometric force. The main purpose of this experiment was to compare dynamic measures of fatigue [maximal torque (Tmax), maximal velocity (Vmax) and maximal power (Pmax)] with measures associated with maximal isometric force [isometric maximal voluntary contraction (IMVC) and maximal rate of force development (MRFD)] 10 s after different fatiguing exercises and during the recovery period (1-8 min after). Ten young men completed six experimental sessions (3 fatiguing exercises×2 types of fatigue measurements). The fatiguing exercises were: 30 s all-out intensity (AI), 10 min at severe intensity (SI) and 90 min at moderate intensity (MI). Relative Pmax decreased more than IMVC after AI exercise (P=0.005) while the opposite was found after SI (P=0.005) and MI tasks (P<0.001). There was no difference between the decrease in IMVC and Tmax after the AI exercise, but IMVC decreased more than Tmax immediately following and during the recovery from the SI (P=0.042) and MI exercises (P<0.001). Depression of MRFD was greater than Vmax after all fatiguing exercises and during recovery (all P<0.05). Despite the general definition of fatigue, isometric assessment of fatigue is not interchangeable with dynamic assessment following dynamic exercises with large muscle mass of different intensities, i.e. the results from isometric function cannot be used to estimate dynamic function and vice versa. This implies different physiological mechanisms for the various measures of fatigue.


Asunto(s)
Ejercicio Físico/fisiología , Contracción Isométrica/fisiología , Fatiga Muscular/fisiología , Adulto , Humanos , Masculino , Adulto Joven
18.
Med Sci Sports Exerc ; 50(10): 2132-2144, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29787475

RESUMEN

PURPOSE: The assessment of power changes after fatiguing exercise provides important additional information about neuromuscular function compared with traditional isometric measurements, especially when exploring age-related changes in fatigability. Therefore, the aim of this review was to explore the effects of age on neuromuscular fatigue (NMF) when measured in isometric compared with dynamic contractions. The importance of central and peripheral mechanisms contributing to age-related NMF was discussed. METHODS: Medline, EMBASE, Cochrane Central Register of Controlled Trials, and SPORT Discus databases were searched. The combination of terms related to the intervention (fatiguing exercise), population (old people) and outcomes (isometric force and power) were used. This meta-analysis was registered on PROSPERO (CRD42016048389). RESULTS: Thirty-one studies were included. The meta-analyses revealed that force decrease was greater (there was more NMF) in young subjects than their older counterparts when fatigue was induced by isometric tasks (effect size [ES], 0.913; confidence interval [CI], 0.435-1.391; P < 0.001), but not when the fatiguing exercise was performed in dynamic mode (ES, 0.322; CI, -0.039 to 0.682; P = 0.08). Older individuals demonstrated a greater reduction in power after fatigue induced by either dynamic or isometric tasks (ES, -0.891; CI, -1.657 to -0.125; P = 0.023). CONCLUSIONS: There is no difference in the isometric force loss between young and old people when fatigue is induced by dynamic tasks. However, maximal power is more decreased after fatigue tasks in older adults. Thus, the assessment of fatigue (isometric force vs power) must be considered in identifying age-related NMF mechanisms.


Asunto(s)
Factores de Edad , Ejercicio Físico , Fatiga Muscular , Adolescente , Adulto , Anciano , Humanos , Contracción Isométrica , Adulto Joven
19.
J Strength Cond Res ; 31(6): 1601-1609, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28538311

RESUMEN

The objective of this study was to develop a standardized test to determine quadriceps and hamstrings muscle activation in a position emulating a noncontact anterior cruciate ligament injury. We assessed the intrasession and intersession reliability of surface electromyography (EMG) of the dominant leg after single-leg landing from a standardized hurdle jump. Eighteen subjects (10 males, 8 females) participated in 4 repeated sessions. During each session, individuals performed 3 successful jumps over a hurdle set to 75% of their maximal countermovement jump height and landed on their dominant leg. A jump was only considered successful if the individual could maintain the landing position for longer than 2 seconds after initial ground contact. In one of the 4 sessions, subjects were tested again after a 4-minute rest. The activation of the vastus lateralis (VL), vastus medialis (VM), and biceps femoris (BF), were examined by quantifying the root mean squared (RMS) EMG for 2 seconds immediately after the initial contact. Data from all 3 successful jumps were used to generate intraclass correlation coefficients (ICC), which were then used to determine intrasession and intersession reliability of surface EMG for each muscle. Intrasession reliability was excellent with ICC values of 0.96, 0.94, and 0.93 for the VL, VM, and BF, respectively. Additionally, intersession ICCs were 0.92 (VL), 0.95 (VM), and 0.94 (BF). The standardized hurdle jump with single-leg landing seemed to be a reliable technique for measuring muscle activation for 3 muscles that contribute to knee stabilization.


Asunto(s)
Electromiografía/normas , Músculos Isquiosurales/fisiología , Músculo Cuádriceps/fisiología , Adulto , Lesiones del Ligamento Cruzado Anterior/fisiopatología , Femenino , Humanos , Articulación de la Rodilla/fisiología , Masculino , Reproducibilidad de los Resultados , Deportes/fisiología , Adulto Joven
20.
Neurophysiol Clin ; 47(2): 95-110, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28434551

RESUMEN

The term fatigue is used to describe a distressing and persistent symptom of physical and/or mental tiredness in certain clinical populations, with distinct but ultimately complex, multifactorial and heterogenous pathophysiology. Chronic fatigue impacts on quality of life, reduces the capacity to perform activities of daily living, and is typically measured using subjective self-report tools. Fatigue also refers to an acute reduction in the ability to produce maximal force or power due to exercise. The classical measurement of exercise-induced fatigue involves neuromuscular assessments before and after a fatiguing task. The limitations and alternatives to this approach are reviewed in this paper in relation to the lower limb and whole-body exercise, given the functional relevance to locomotion, rehabilitation and activities of daily living. It is suggested that under some circumstances, alterations in the central and/or peripheral mechanisms of fatigue during exercise may be related to the sensations of chronic fatigue. As such, the neurophysiological correlates of exercise-induced fatigue are briefly examined in two clinical examples where chronic fatigue is common: cancer survivors and people with multiple sclerosis. This review highlights the relationship between objective measures of fatigability with whole-body exercise and perceptions of fatigue as a priority for future research, given the importance of exercise in relieving symptoms of chronic fatigue and/or overall disease management. As chronic fatigue is likely to be specific to the individual and unlikely to be due to a simple biological or psychosocial explanation, tailored exercise programmes are a potential target for therapeutic intervention.


Asunto(s)
Actividades Cotidianas , Terapia por Ejercicio , Fatiga/terapia , Esclerosis Múltiple/terapia , Enfermedad Crónica/terapia , Fatiga/complicaciones , Humanos , Esclerosis Múltiple/complicaciones , Calidad de Vida
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...